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2 2011 MATHEMATICS (EXTENSION 1) HSC COURSE ASSESSMENT TASK 2

Question 1 (13 Marks) Commence a NEW page. Marks
(a) Differentiate each of the following with respect to x:
i xle 2 2
B Inz
ii. 2
Cos
iii. sin®3z 2
iv. logg(1 — ) 2
(b)  Find:
621
/ g dx 2
N / dx 1
ii. —_—
(3x —1)2
iii. / tan x dx 2
Question 2 (12 Marks) Commence a NEW page. Marks
1
(a) State the period and amplitude of y = 3 sin (23: — %) 2
(b)  Solve 8sinf cos @ tanf = cosec @ for 0 < 6 < 2. 3
. sin 2z
(c) Evaluate lim ( > 2
z—0 \ tan 3x
(d) PS and QR are arcs of concentric circles with centre O.

Calculate in terms of 7,

i. the area of the shaded region PQRS. 2
ii. The perimeter of the shaded region PQRS. 3
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Question 3 (10 Marks) Commence a NEW page. Marks
(a) Solve the equation In(x + 6) + In(z —3) =In5 +1n2 3
(b) i. Differentiate x cos z. 1
3
ii. Hence or otherwise, evaluate / rsinzx dx. 3
0
(c) Find the equation of the tangent to the curve y = €'®% at the point on the curve 3
where x = 7.
Question 4 (9 Marks) Commence a NEW page. Marks
(a) Solve the equation 5% — 7e3% + 6 = 0. 3
dy x?
b Find = if y =1 . 2
(b) P Y n(l—x3)
(c) Use mathematical induction to show for n > 1, 4
Ly Ly oy ! =
I1x5 5x9 9x13 (4n—3)(4n+1) 4n+1
Question 5 (9 Marks) Commence a NEW page. Marks
(a) The area between the curve y = tanz, the x axis and the ordinates x = 0 and 3
xr = % is rotated about the x axis.
Yy
y =tanx
\
\
1
n
a
!
‘ Il f\
~_ \‘ T V) x
\\ | '3
\\ | |
N
N /
v
Find the exact volume of the solid which is generated.
(b) i.  On the same set of axes, sketch the graphs of y = sinz and y = 1 — coszx 2
for 0 <z <.
ii. Find the values of x where sinx =1 — cosx for 0 < z < 7. 2
iii. Calculate the area enclosed the curves y = sinx and y = 1 — coszx for 2

0<z<m.

End of paper.

NORTH SYDNEY BOYS’ HIGH SCHOOL

MARCH 14, 2011



STANDARD INTEGRALS

1
2" dx = — "t 1 C, n#-1; x#0ifn<0
n+1

dx =Inx+C, x>0

8]

1
e dx =—e"+C, a#0

a

/
/
/
[osarts =linaic.  aso
/
/
/

1
sin ax dx = ——cosax + C, a#0
a
1
sec? ax dx = —tanax + C, a#0
a
1
secaxtanaxr dr = —secax + C, a#0
a
1 1 o
/mdﬁﬂ :Etan E‘I—C, CL#O

T
=sin!' =+ C, a>0,—a<zxz<a
a

1
/ va? — x2 d

1
/ﬁdfﬂ :n<x+vx2—a2)+07 x>a>0
Ir“ —a
1 /72 2
X

NOTE: Inz =log, x, z > 0
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Suggested Solutions

Question 1 iv.

(a) i. (2 marks)
v' [1]  for correct application of
product rule.

v [1] for final answer.

d

3,—2
e (m e m)
u=12> wv=e*
W =322 v =—-2%
d 3 —2z
@) b) i

— 563 X (_2672:1:) + 6721 . 3(E2

_ ‘ 3720—2% _ 943,27 ‘

= 2?72 (3 — 21)

ii. (2 marks)
v’ [1]  for correct application of
quotient rule.

v' [1] for final answer.

iii.

d (hm:) cosx-i—lnx-sinx

dr \ cosz cos2 x
COS T o
_ == +sinzlnzx Xz
cos? x Xz

cosr +zsinzlnz

ii.

(2 marks)
v' [1] for correctly changing base from
10 to e.

v [1] for correct differentiation.

- logio(1 = o)) = - ()

" dz \ In10
1 1
- ni0~ 1-=x
1
- In10(z — 1)

(2 marks)
v' [-1] for each mistake.

621‘ 1 .

(1 mark)

/(3;%1)2:/(3:6—1)2@

1
= —§(3x - t+c

1
T 3Bz-1) e

(2 marks)
v' [-1] for each mistake.

sin x
tanx dxr = dx
CcoS T
—sinzx
= — dx
CcoS T

:‘—ln(cos:c)+C"

xcos? x
iii. (2 marks) Question 2
v' 1] for correct application of chain
rule. (a) (2 marks)
v' [1] each for a and T.

v [1] for final answer.

d
e (sin2 3x) = 2sin3x x 3 cos 3x

T
= | 6sin 3z cos 3x

1
y = —sin (2.%'— E) = asin (nz + ¢)

3 4

a =

1
3 n 2
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(b) (3 marks)

v [1] for resolving tanf and cosecf into
sin @ and cos 6.

v [1] for each of %, 3T.

&sin f cos 6 tan @ = cosec 0

sin 0 1
8sinf x eost x —— =
S cost  sind

8sin®f = 1

sin® @ = E

8
1
- sinf = =
.. sin 5

m™ 5T

0=—,—

6’ 6

(¢) (2 marks)
v' [1] for manipulating original limit to

2 sin 2z 3x
become 3 X EEE X e

done, mark is not awarded.

If this is not (b)

v' [1] for final answer.

. sin 2x 2 . sin 2x 3z
lim = — x lim X
z—0 \ tan 3z 3 z—=0 2x tan 3x
2
=—-x1x1= 2
3 3
(d) i. (2 marks)
1 1
A:—><252><E——><152><E
2 3 2 3
2007 9
= cm
3

ii. (3 marks)
P=PS+QR+ PQ+ RS
- (15><5)+(25xf)+10+10
2 3

407

Question 3
(a) (3 marks)

v' [1] for 1n{(ac +6)(z+ 3)} =In(5 x 2).
v

[1] for z = —7,4.

v [1] for final answer.
z+6

v [0] forIn (m_3
the quadratic and also the need to discard
x=—1.

= In 10 as this sidesteps

In(x+6) +In(x —3) =In5+1n2
ln[(:c +6)(x +3)] — In(5 x 2)
(x4 6)(x —3) =10
2?4+ 3z —28 =0
(+7)(zr—4)=0
r=-"7,4

However, In(—7+6) and In(—7—3) are not
defined.

lx=4
i. (1 mark)
— (zcosx
el )
U=T UV=COST
W=1 v =—sinx
T (xcosz) = —xsinx + cosx
T

ii. (3 marks)
v’ [1] for fO% zsinzdr = fO% cosxdx—
fO% L (zcosz) dz

v' [1] for finding the primitive of the
two functions.

v [1] for final answer.

. d .
Since T (xrcosx) = —xsinz+cosz,
x

c.xsinx = cosx — e (xcosx)

T
3 .
. T sinx dx
0

3 3 d
:/ cosxdx—/ — (xcosz) dx
0 0 dx

B}
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(¢) (3 marks)
d
y = etana: = d_y — se02 xetanz
T
Atz =7,
d_y — 1 tan 7
s
dr  cos?
2
= (\/5) x el
= 2e
y = 6ta‘n% —¢

By the point gradient formula,

™
y—e elx 1

y:2ex—%r+e

Question 4
(a) (3 marks)
v' [1] for correct factorisation.
v [1] for €3® =1 and e3* = 6.
v' [1] for final solutions.
e — e +6=0
Let m = e3%,
m® —Tm +6 =0
(m—=6)(m—1)=0
m=1,6
e =16
633} =1 631 =6
11 6
xr=—lIn
3
0 11 6
lx=0o0r -In
3
(b) (2 marks)

v [1] for using log rules to resolve fraction
into a simpler expression.

v [1] for final answer.

4
y=1In (1:6—3> =Inz* —In(1 — 2%)
-z

dy 4 —? |4 o z2
de x 1—a3 |z 1—2a3
(¢) (4 marks)

v' [1] for correct evaluation of base case.
v [1] for correct assumption in inductive
step.

v [2] for correct inductive step part 2.

1 1 1

x5 5x90 ox13 "
1 n

(4n —3)(4n +1) T in+1

e Basecase: n=1

+

1 —
1x5 5

11
4)+1 5

Hence the statement is true for n = 1.
e Inductive step: assume the statement
is true for some value k € R, i.e.

1 1 1

15 5x9 9x13 "
1 k

Ak —3)(4k+1) 4k +1

and evaluate the statement when
n==*%k-+1:

1

__k
T 4k+1

1 1

x5 Y@@t
1

(0 1) - 8) (a0 + 1) + 1)

+

k
T+l @k+ D@k +5)
k(4k +5) + 1
(4k + 1)(4k + 5)
4k? + 5k + 1
(4k + 1)(4k + 5)
_ Tk + 1)

- (4+T7(4k +5)
k+1

T ak+ 1) +1
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The

n==*%k+1.

statement is

also true for
By the principle of

mathematical induction, the statement
is true for all positive integers n.

Question 5

(a)

(3 marks)

us

_ 2 . 3.9
V=r/l|yde=m7 tan” x dz
0

3
i. (2 marks)
v for y = 1 — cosz.
v for y = sinx.
v [-1] if any of the following are

no labels (one label = no
penalty)

no scale

larger domain than required

extra solution(s) to x

y=1—coszx

‘\<8li
T

T
s

|
T
2

ii.

iii.

(2 marks)

(2 marks)

A:/Qsinx—(l—cosx)d:c
0

3
:/ sinx +cosx — 1dx
0

. 2
= [—cos:c+sm:c—x]

0
:(sing—siﬁ’f)’>
0)-(3-0)
—(ecgg= —cos0) — [ = —
2 2
2_3 :4—7T
2 2
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